
HOUR 1

Jumping In with Both Feet: A
Visual Basic 2005
Programming Tour

What You’ll Learn in This Hour:
. Building a simple (yet functional) Visual Basic application
. Letting a user browse a hard drive
. Displaying a picture from a file on disk
. Getting familiar with some programming lingo
. Learning about the Visual Studio 2005 IDE

Learning a new programming language can be intimidating. If you’ve never programmed

before, the act of typing seemingly cryptic text to produce sleek and powerful applications

probably seems like a black art, and you might wonder how you’ll ever learn everything

you need to know. The answer is, of course, one step at a time. The first step to learning a

language is the same as that of any other activity: building confidence. Programming is

part art and part science. Although it might seem like magic, it’s more akin to illusion;

after you know how things work, a lot of the mysticism goes away, freeing you to focus on

the mechanics necessary to produce the desired result.

In this hour, you’ll complete a quick tour that takes you step-by-step through creating a

complete, albeit small, Visual Basic program. Most introductory programming books start

out with the reader creating a simple Hello Word program. I’ve yet to see a Hello World

program that’s the least bit helpful (they usually do nothing more than print hello

world to the screen—oh, fun). So, instead, you’ll create a picture viewer application that

lets you view Windows bitmaps and icons on your computer. You’ll learn how to let a user

browse for a file and how to display a selected picture file on the screen. Both of these

skills will come in handy in the real-world applications that you’ll create.

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 7

8 HOUR 1: A Visual Basic 2005 Programming Tour

Producing large, commercial solutions is accomplished by way of a series of small

steps. After you’ve finished creating the project in this hour, you’ll have a feel for the

overall development process and will have taken the first step toward becoming an

accomplished programmer. In fact, you will be building upon this Picture Viewer

program in subsequent chapters. By the time you complete this book, you will have

built a robust application, complete with sizable screens, an intuitive interface, and

professional error handling. By the end of this hour, you’ll realize just how much

fun it is to program using Visual Basic 2005.

Starting Visual Basic 2005
Before you begin creating programs in Visual Basic 2005, you should be familiar

with the following terms:

. Distributable component The final, compiled version of a project. Components

can be distributed to other people and other computers, and they don’t require

the Visual Basic 2005 development environment (the tools you use to create a

.NET program) to run (although they do require the .NET runtime, which I’ll

discuss in Hour 23, “Deploying Applications”). Distributable components are

often called programs. In Hour 23, you’ll learn how to distribute the Picture

Viewer program that you’re about to build to other computers.

. Project A collection of files that can be compiled to create a distributable

component (program). There are many types of projects, and complex appli-

cations might consist of multiple projects, such as a Windows application proj-

ect, and support dynamic link library (DLL) projects.

. Solution A collection of projects and files that make up an application or

component.

In the past, Visual Basic was an autonomous language. This has changed. Now,
Visual Basic is part of a larger entity known as the .NET Framework. The .NET
Framework encompasses all the .NET technology, including Visual Studio .NET (the
suite of development tools) and the common language runtime (CLR), which is the
set of files that make up the core of all .NET applications. You’ll learn about these
items in more detail as you progress through this book. For now, realize that
Visual Basic is one of many languages that exist within the .NET family. Many
other languages, such as C#, are also .NET languages, make use of the common
language runtime, and are developed within Visual Studio .NET.

By the
Way

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 8

Creating a New Project 9

Visual Studio 2005 is a complete development environment, and it’s called the IDE

(short for integrated development environment). The IDE is the design framework

in which you build applications; every tool you’ll need to create your Visual Basic

projects is accessed from within the Visual Basic IDE. Again, Visual Studio 2005 sup-

ports development using many different languages—Visual Basic being the most

popular. The environment itself is not Visual Basic, but the language you’ll be using

within Visual Studio 2005 is Visual Basic. To work with Visual Basic projects, you

first start the Visual Studio 2005 IDE.

Start Visual Studio 2005 now by choosing Microsoft Visual Basic 2005 Express

Edition on your Start/Programs menu. If you are running the full retail version of

.NET, your shortcut may have a different name. In this case, locate the shortcut on

your Start menu and click it once to start the Visual Studio 2005 IDE.

Creating a New Project
When you first start Visual Studio 2005, you’re shown the Start Page tab within the

IDE. You can open projects created previously or create new projects from this Start

page (see Figure 1.1). For this quick tour, you’re going to create a new Windows

application, so open the File menu and click New Project to display the New Project

dialog box shown in Figure 1.2.

If your Start page doesn’t look like the one in Figure 1.1, chances are that you’ve
changed the default settings. In Hour 2, “Navigating Visual Basic 2005,” I’ll show
you how to change them back.

The New Project dialog box is used to specify the type of Visual Basic project to cre-

ate. (You can create many types of projects with Visual Basic, as well as with the

other supported languages of the .NET Framework.) Create a new Windows applica-

tion by following these steps:

1. Make sure that the Windows Application icon is selected (if it’s not, click it

once to select it).

2. At the bottom of the New Project dialog box is a Name text box. This is where,

oddly enough, you specify the name of the project you’re creating. Enter

Picture Viewer in the Name text box.

3. Click OK to create the project.

By the
Way

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 9

10 HOUR 1: A Visual Basic 2005 Programming Tour

Always set the Name text box to something meaningful before creating a project,
or you’ll have more work to do later if you want to move or rename the project.

When Visual Basic creates a new Windows application project, it adds one form (the

empty gray window) for you to begin building the interface—the graphical windows

that you interact with, for your application (see Figure 1.3).

FIGURE 1.1
You can open
existing projects
or create new
projects from
the Visual
Studio Start
page.

FIGURE 1.2
The New Project
dialog box
enables you to
create many
types of .NET
projects.

Did you
Know?

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 10

Creating a New Project 11

Within Visual Studio 2005, form is the term given to the design-time view of win-
dows that can be displayed to a user.

By the
Way

FIGURE 1.3
New Windows
applications
start with a
blank form; the
fun is just
beginning!

Your Visual Studio 2005 environment might look different from that shown in the

figures of this hour due to the edition of Visual Studio 2005 you’re using, whether

you’ve already played with Visual Studio 2005, and other factors such as the resolu-

tion of your monitor. All the elements discussed in this hour exist in all editions of

Visual Studio 2005, however. (If a window shown in a figure isn’t displayed in your

IDE, use the View menu to display it.)

To create a program that can be run on another computer, you start by creating a
project and then compiling the project into a component such as an executable (a
program a user can run) or a DLL (a component that can be used by other pro-
grams and components). The compilation process is discussed in detail in Hour
23. The important thing to note at this time is that when you hear someone refer
to creating or writing a program, just as you’re creating the Picture Viewer program
now, they’re referring to the completion of all steps up to and including compiling
the project to a distributable file.

By the
Way

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 11

12 HOUR 1: A Visual Basic 2005 Programming Tour

Understanding the Visual Studio .NET
Environment
The first time you run Visual Studio 2005, you’ll notice that the IDE contains a num-

ber of windows, such as the Properties window on the right, which is used to view

and set properties of objects. In addition to these windows, the IDE contains a num-

ber of tabs, such as the vertical Toolbox tab on the left edge of the IDE (refer to

Figure 1.3). Try this now: Click the Toolbox tab to display the Toolbox window (click-

ing a tab displays an associated window). You can hover the mouse over a tab for a

few seconds to display the window as well. To hide the window, simply move the

mouse off the window, if you hovered over the tab to display it, or click on another

window. To close the window completely, click the Close (X) button in the window’s

title bar.

If you opened the toolbox by clicking its tab rather than hovering over the tab, the
toolbox will not automatically close. Instead, it will stay open until you click on
another window.

You can adjust the size and position of any of these windows, and you can even

hide and show them as needed. You’ll learn how to customize your design environ-

ment in Hour 2.

Unless specifically instructed to do so, don’t double-click anything in the Visual
Studio 2005 design environment. Double-clicking most objects produces an entire-
ly different result than single-clicking does. If you mistakenly double-click an object
on a form (discussed shortly), a code window is displayed. At the top of the code
window is a set of tabs: one for the form design and one for the code. Click the
tab for the form design to hide the code window and return to the form.

The Properties window at the right side of the design environment is perhaps the

most important window in the IDE, and it’s the one you’ll use most often. If your

computer display resolution is set to 800×600, you can probably see only a few prop-

erties at this time. This makes it difficult to view and set properties as you create

projects. All the screen shots in this book are taken at 800×600 due to size con-

straints, but you should run at a higher resolution if you can. I highly recommend

that you develop applications with Visual Basic at a screen resolution of 1024×768

or higher because it offers plenty of work space. Keep in mind, however, that end

users might be running at a lower resolution than you are using for development.

To change your display settings, right-click your desktop and select Properties.

By the
Way

Watch
Out!

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 12

Changing the Characteristics of Objects 13

Changing the Characteristics of Objects
Almost everything you work with in Visual Basic is an object. Forms, for instance,

are objects, as are all the items you can put on a form to build an interface such as

list boxes and buttons. There are many types of objects, and objects are classified by

type. For example, a form is a Form object, whereas items you can place on a form

are called Control objects, or controls. (Hour 3, “Understanding Objects and

Collections,” discusses objects in detail.) Some objects don’t have a physical appear-

ance but exist only in code, and you’ll learn about these kinds of objects in later

hours.

Every object has a distinct set of attributes known as properties (regardless of

whether the object has a physical appearance). You have certain properties about

you, such as your height and hair color. Visual Basic objects have properties as well,

such as Height and BackColor. Properties define the characteristics of an object.

When you create a new object, the first thing you need to do is set its properties so

that the object appears and behaves the way you want. To display the properties of

an object, click the object in its designer (the main work area in the IDE).

Click anywhere in the default form now and check to see that its properties are dis-

played in the Properties window. You’ll know because the drop-down list box at the

top of the properties window will contain the form’s name: Form1

System.Windows.Forms.Form. Form1 is the name of the object, whereas

System.Windows.Forms.Form is the type of object.

Naming Objects
The property you should always set first for any new object is the Name property.

Press F4 to display the Properties window (if it’s not already visible), and scroll

toward the top of the properties list until you see the “(Name)” property (see Figure

1.4). If the Name property isn’t one of the first properties listed, your Properties win-

dow is set to show properties categorically instead of alphabetically. You can show

the list alphabetically by clicking the Alphabetical button that appears just above

the properties grid.

I recommend that you keep the Properties window set to show properties in alpha-
betical order; doing so makes it easier to find properties that I refer to in the text.
Note, the Name property always stays toward the top of the list and is referred to
as (Name). If you’re wondering why it has parentheses around it, that’s because
the parentheses force the property to the top of the list because symbols come
before letters in an alphabetical sort.

By the
Way

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 13

14 HOUR 1: A Visual Basic 2005 Programming Tour

When saving a project, you choose a name and a location for the project and its

files. When you first create an object, Visual Basic gives the object a unique, generic

name based on the object’s type. Although these names are functional, they simply

aren’t descriptive enough for practical use. For instance, Visual Basic named your

form Form1, but it’s common to have dozens of forms in a project, and it would be

extremely difficult to manage such a project if all forms were distinguishable only

by a number (Form2, Form3, and so forth).

What you’re actually working with is a form class, or template, that will be used to
create and show forms at runtime. For the purpose of this quick tour, I simply
refer to it as a form. See Hour 5, “Building Forms—The Basics,” for more informa-
tion.

To better manage your forms, give each one a descriptive name. Visual Basic gives

you the chance to name new forms as they’re created in a project. Visual Basic cre-

ated this default form for you, so you didn’t get a chance to name it. It’s important

to not only change the name of the form but also to change the filename of the

form. Change the programmable name and the filename by following these steps:

FIGURE 1.4
The Name prop-
erty is the first
property you
should change
when you add a
new object to
your project.

By the
Way

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 14

Changing the Characteristics of Objects 15

1. Click the Name property and change the text from Form1 to frmViewer. Notice

that this does not change the filename of the form as it’s displayed in the

Solution Explorer window.

2. Right-click Form1.vb in the Solution Explorer window (the window above the

Properties window).

3. Choose Rename from the context menu that appears.

4. Change the text from Form1.vb to frmViewer.vb.

I use the frm prefix here to denote that the file is a form class. Prefixes are
optional, but I find they really help you keep things organized.

In future examples, I won’t have you change the filename each time because you’ll

have enough steps to accomplish as it is. I do recommend, however, that you always

change your filenames to something meaningful in your real projects.

The Name property of the form is actually changed for you automatically when you
rename the file. I had you explicitly change the Name property because it’s some-
thing you’re going to be doing a lot—for all sorts of objects.

Setting the Text Property of the Form
Notice that the text that appears in the form’s title bar says Form1. This is because

Visual Basic sets the form’s title bar to the name of the form when it’s first created but

doesn’t change it when you change the name of the form. The text in the title bar is

determined by the value of the Text property of the form. Change the text now by

following these steps:

1. Click the form once more so that its properties appear in the Properties

window.

2. Use the scrollbar in the Properties window to locate the Text property.

3. Change the text to Picture Viewer. Press the Enter key or click on a different

property. You’ll see the text in the title bar of the form change.

Saving a Project
The changes you’ve made so far exist only in memory; if you were to turn off your

computer at this time (don’t do this), you would lose all of your work up to this

By the
Way

Did you
Know?

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 15

16 HOUR 1: A Visual Basic 2005 Programming Tour

point. Get into the habit of frequently saving your work (committing the changes to

disk).

Click the Save All button on the toolbar (the picture of a stack of diskettes) now to

save your work. Visual Basic then displays the Save Project dialog box shown in

Figure 1.5. Notice that the Name property is already filled in because you named the

project when you created it. The Location text box is where you specify the location

in which to save the project. Visual Basic creates a subfolder in this location using

the value in the Name text box (in this case, Picture Viewer). You can use the

default location, or change it to suit your purposes. Don’t worry about the Solution

Name text box or the check box for Create Directory for Solution at this time, just be

sure to leave the check box unchecked as it appears in Figure 1.5. Click Save to save

the project.

FIGURE 1.5
When saving a
project, choose
a name and a
location for the
project and its
files.

Giving the Form an Icon
Everyone who has used Windows is familiar with icons—the little pictures that rep-

resent programs. Icons most commonly appear in the Start menu next to the name

of their respective programs. In Visual Basic, you not only have control over the icon

of your program file, you can also give every form in your program a unique icon if

you want to.

The following instructions assume that you have access to the source files for the
examples in this book. They are available at www.samspublishing.com. You can
also get these files, as well as discuss this book, at my website at
http://www.jamesfoxall.com/books.htm. When you unzip the samples, a folder will
be created for each hour, and within each hour’s folder will be subfolders for the
sample projects. You’ll find the icon in the folder Hour 1\Picture Viewer.

You don’t have to use the icon I’ve provided for this example; you can use any
icon of your choice. If you don’t have an icon available (or you want to be a rebel),
you can skip this section without affecting the outcome of the example.

To give the form an icon, follow these steps:

1. In the Properties window, click the Icon property to select it.

By the
Way

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 16

Changing the Characteristics of Objects 17

2. When you click the Icon property, a small button with three dots appears to

the right of the property. Click this button.

3. Use the Open dialog box that appears to locate the PictureViewer.ico file or

another icon file of your choice. When you’ve found the icon, double-click it,

or click it once to select it and then click Open.

After you’ve selected the icon, it appears in the Icon property along with the word

“Icon.” A small version of the icon appears in the upper-left corner of the form as

well. Whenever this form is minimized, this is the icon displayed on the Windows

taskbar.

This doesn’t change the icon for the project as a whole. In Hour 23, you’ll learn
how to assign an icon to your distributable file.

Changing the Size of the Form
Next, you’re going to change the Width and Height properties of the form. The

Width and Height values are shown collectively under the Size property; Width

appears to the left of the comma, Height to the right. You can change the Width or

Height property by changing the corresponding number in the Size property. Both

values are represented in pixels (that is, a form that has a Size property of 200,350

is 200 pixels wide by 350 pixels tall). To display and adjust the Width and Height

properties separately, click the small plus sign (+) next to the Size property (see

Figure 1.6).

By the
Way

FIGURE 1.6
Some proper-
ties can be
expanded to
show more spe-
cific properties.

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 17

18 HOUR 1: A Visual Basic 2005 Programming Tour

A pixel is a unit of measurement for computer displays; it’s the smallest visible
“dot” on the screen. The resolution of a display is always given in pixels, such as
800×600 or 1024×768. When you increase or decrease a property by one pixel,
you’re making the smallest possible visible change to the property.

Change the Width property to 400 and the Height to 325 by typing in the correspon-

ding box next to a property name. To commit a property change, press Tab or Enter,

or click a different property or window. Your screen should now look like the one in

Figure 1.7.

By the
Way

FIGURE 1.7
Changes made
in the
Properties win-
dow are reflect-
ed as soon as
they’re com-
mitted.

You can also size a form by dragging its border, which you’ll learn about in Hour 2.
This property can also be changed by program code, which you’ll learn how to
write in Hour 5.

Save the project now by choosing File, Save All from the menu or by clicking the

Save All button on the toolbar—it has a picture of stacked diskettes on it.

Adding Controls to a Form
Now that you’ve set the initial properties of your form, it’s time to create a user

interface by adding objects to the form. Objects that can be placed on a form are

called controls. Some controls have a visible interface with which a user can interact,

By the
Way

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 18

Adding Controls to a Form 19

whereas others are always invisible to the user. You’ll use controls of both types in

this example. On the left side of the screen is a vertical tab titled Toolbox. Click the

Toolbox tab now to display the Toolbox window and click the plus sign next to

Common Controls to see the most commonly used controls (see Figure 1.8). The tool-

box contains all the controls available in the project, such as labels and text boxes.

There are four ways to add a control to a form, and Hour 5 explains them in
detail. In this hour, you will use the technique of double-clicking a tool in the tool-
box and copying and pasting a control.

The toolbox will close as soon as you’ve added a control to a form and when the

pointer is no longer over the toolbox. To make the toolbox stay visible, you would

click the little picture of a pushpin located in the toolbox’s title bar.

See Hour 2 for more information on customizing the design environment.

I don’t want you to add them yet, but your Picture Viewer interface will consist of

the following controls:

FIGURE 1.8
The toolbox is
used to select
controls to build
a user interface.

Did you
Know?

By the
Way

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 19

20 HOUR 1: A Visual Basic 2005 Programming Tour

. Two Button controls The standard buttons that you’re used to clicking in

pretty much every Windows program you’ve ever run

. A PictureBox control A control used to display images to a user

. An OpenFileDialog control A hidden control that exposes the Windows

Open File dialog box functionality

Designing an Interface
It’s generally best to design the user interface of a form and then add the code

behind the interface to make the form functional. You’ll build your interface in the

following sections.

Adding a Visible Control to a Form
Start by adding a Button control to the form. Do this by double-clicking the Button

item in the toolbox. Visual Basic creates a new button and places it in the upper-left

corner of the form (see Figure 1.9).

FIGURE 1.9
When you
double-click a
control in the
toolbox, the con-
trol is added to
the upper-left
corner of the
form.

Using the Properties window, set the button’s properties as follows. Remember, when

you view the properties alphabetically, the Name property is listed first, so don’t go

looking for it down in the list or you’ll be looking awhile.

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 20

Designing an Interface 21

Property Value

Name btnSelectPicture

Location 301,10 (Note: 301 is the x coordinate; 10 is the y coordinate.)

Size 85,23

Text Select Picture

You’re now going to create a button that the user can click to close the Picture

Viewer program. Although you could add another new button to the form by dou-

ble-clicking the Button control on the toolbox again, this time you’ll add a button to

the form by creating a copy of the button you’ve already defined. This allows you to

easily create a button that maintains the size and other style attributes of the origi-

nal button when the copy was made.

To do this, right-click the button and choose Copy from its shortcut menu. Next,

right-click anywhere on the form and choose Paste from the form’s shortcut menu

(you could have also used the keyboard shortcuts Ctrl+C to copy and Ctrl+V to

paste). The new button appears centered on the form, and it’s selected by default.

Notice that it retained almost all of the properties of the original button, but the

name has been reset. Change the properties of the new button as follows:

Property Value

Name btnQuit

Location 301,40

Text Quit

The last visible control you need to add to the form is a PictureBox control. A

PictureBox has many capabilities, but its primary purpose is to show pictures, which

is precisely what you’ll use it for in this example. Add a new PictureBox control to

the form by double-clicking the PictureBox item in the toolbox and set its properties

as follows:

Property Value

Name picShowPicture

BorderStyle FixedSingle

Location 8,8

Size 282,275

After you’ve made these property changes, your form will look like the one in Figure

1.10. Click the Save All button on the toolbar to save your work.

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 21

22 HOUR 1: A Visual Basic 2005 Programming Tour

Adding an Invisible Control to a Form
All the controls that you’ve used so far sit on a form and have a physical appear-

ance when the application is run. Not all controls have a physical appearance,

however. Such controls, referred to as nonvisual controls (or invisible-at-runtime

controls), aren’t designed for direct user interactivity. Instead, they’re designed to give

you, the programmer, functionality beyond the standard features of Visual Basic.

To enable the user to select a picture to display, you need to give them the ability to

locate a file on their hard drive. You might have noticed that whenever you choose

to open a file from within any Windows application, the dialog box displayed is

almost always the same. It doesn’t make sense to force every developer to write the

code necessary to perform standard file operations, so Microsoft has exposed the

functionality via a control that you can use in your projects. This control is called

the OpenFileDialog control, and it will save you dozens and dozens of hours that

would otherwise be necessary to duplicate this common functionality.

Other controls in addition to the OpenFileDialog control give you file functionality.
For example, the SaveFileDialog control provides features for allowing the user to
specify a filename and path for saving a file.

Display the toolbox now and scroll down using the down arrow in the lower part

of the toolbox until you can see the OpenFileDialog control (it’s in the Dialogs

FIGURE 1.10
An application’s
interface does-
n’t have to be
complex to be
useful.

By the
Way

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 22

Designing an Interface 23

category), and then double-click it to add it to your form. Note that the control isn’t

placed on the form, but rather it appears in a special area below the form (see

Figure 1.11). This happens because the OpenFileDialog control has no form inter-

face to display to a user. It does have an interface (a dialog box) that you can dis-

play as necessary, but it has nothing to display directly on a form.

Select the OpenFileDialog control and change its properties as follows:

Property Value

Name ofdSelectPicture

Filename <make empty>

Filter Windows Bitmaps|*.BMP|JPEG Files|*.JPG

Title Select Picture

The Filter property is used to limit (Filter) the types of files that will be displayed in

the Open File dialog box. The format for a filter is description|filter. The text that

appears before the first pipe symbol is the descriptive text of the file type, whereas

the text after the pipe symbol is the pattern to use to filter files. You can specify

more than one filter type by separating each description|filter value by another pipe

symbol. Text entered into the Title property appears in the title bar of the Open

File dialog box.

FIGURE 1.11
Controls that
have no inter-
face appear
below the form
designer.

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 23

24 HOUR 1: A Visual Basic 2005 Programming Tour

The graphical interface for your Picture Viewer program is now finished. If you

pinned the toolbox open, click the pushpin in the title bar of the toolbox now to

close it.

Writing the Code Behind an Interface
You have to write code for the program to be capable of performing actions and

responding to user interaction. Visual Basic is an event-driven language, which

means that code is executed in response to events. These events might come from

users, such as a user clicking a button, or from Windows itself (see Hour 4,

“Understanding Events,” for a complete explanation of events). Currently, your

application looks nice, but it won’t do a darn thing (sort of like me on Saturday

mornings—before kids). The user can click the Select Picture button until they can

file for disability with carpel tunnel syndrome, but nothing will happen because you

haven’t told the program what to do when the user clicks the button. You can see

this for yourself now by pressing F5 to run the project. Feel free to click the buttons,

but they don’t do anything. When you’re finished, close the window you created to

return to Design mode.

You’re going to write code to accomplish two tasks. First, you’re going to write code

that lets the user browse his hard drives to locate and select a picture file and then

display the file in the picture box (this sounds a lot harder than it is). Second, you’re

going to add code to the Quit button that shuts down the program when the user

clicks the button.

Letting a User Browse for a File
The first bit of code you’re going to write enables the user to browse his hard drives,

select a picture file, and then see the selected picture in the PictureBox control. This

code executes when the user clicks the Select Picture button; therefore, it’s added to

the Click event of that button (you’ll learn all about events in later hours).

When you double-click a control on a form in Design view, the default event for that

control is displayed in a code window. The default event for a Button control is its

Click event, which makes sense because clicking is the most common action a user

performs with a button. Double-click the Select Picture button now to access its

Click event in the code window (see Figure 1.12).

When you access an event, Visual Basic builds an event handler, which is essential-

ly a template procedure in which you add the code that executes when the event

occurs. The cursor is already placed within the code procedure, so all you have to do

is add code. By the time you’re finished with this book, you’ll be madly clicking

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 24

Writing the Code Behind an Interface 25

away as you write your own code to make your applications do exactly what you

want them to do—well, most of the time. For now, just enter the code as I present it

here.

FIGURE 1.12
You’ll write all
code in a win-
dow such as
this.

It’s important that you get in the habit of commenting your code, so the first state-

ment you’re going to enter is a comment. Beginning a statement with an

apostrophe designates the statement as a comment; the compiler won’t do anything

with the statement, so you can enter whatever text you want after the apostrophe.

Type the following statement exactly as it appears and press the Enter key at the

end of the line:

‘ Show the open file dialog box.

The next statement you’ll enter triggers a method of the OpenFileDialog control that

you added to the form. You’ll learn all about methods in Hour 3. For now, think of a

method as a mechanism to make a control do something. The ShowDialog()

method tells the control to show its Open dialog box and let the user select a file.

The ShowDialog() method returns a value that indicates its success or failure,

which you’ll then compare to a predefined result (DialogResult.OK). Don’t worry

too much about what’s happening here; you’ll be learning the details of all this in

later hours, and the sole purpose of this hour is to get your feet wet. In a nutshell,

the ShowDialog() method is invoked to let a user browse for a file. If the user selects

a file, more code is executed. Of course, there’s a lot more to using the

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 25

26 HOUR 1: A Visual Basic 2005 Programming Tour

OpenFileDialog control than I present in this basic example, but this simple state-

ment gets the job done. Enter the following statement and press Enter to commit the

code (don’t worry about capitalization; Visual Basic will fix your case for you!):

If ofdSelectpicture.ShowDialog = DialogResult.OK Then

After you insert the statement that begins with If and press Enter, Visual Basic
automatically creates the End If statement for you. If you type in End If, you’ll
wind up with two End If statements, and your code won’t run. If this happens to
you, delete one of the statements. You’ll learn all about If statements in Hour
13, “Making Decisions in Visual Basic Code.”

Time for another comment. Your cursor is currently between the statement that

starts with If and the End If statement. Leave the cursor here and type this state-

ment; remember to press Enter at the end of the code line:

‘ Load the picture into the picture box.

Don’t worry about indenting the code by pressing the Tab key or using spaces.
Visual Basic automatically indents code for you.

This next statement, which appears within the If construct (between the If and End

If statements), is the line of code that actually displays the picture in the picture

box. (If you’re itching to know more about graphics, take a look at Hour 18,

“Working with Graphics.”)

Enter the following statement:

picshowpicture.Image = Image.FromFile(ofdselectpicture.filename)

In addition to displaying the selected picture, your program is also going to display

the path and filename of the picture in the title bar. When you first created the

form, you changed the Text property of the form using the Properties window. To

create dynamic applications, properties need to be constantly adjusted at runtime,

and this is done using code. Insert the following two statements (press Enter at the

end of each line):

‘ Show the name of the file in the form’s caption.
Me.Text = “Picture Viewer(“ & ofdselectpicture.FileName & “)”

After you’ve entered all the code, your editor should look like that shown in

Figure 1.13.

By the
Way

Did you
Know?

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 26

Writing the Code Behind an Interface 27

Terminating a Program Using Code
The last bit of code you’ll write terminates the application when the user clicks the

Quit button. To do this, you’ll need to access the Click event handler of the btnQuit

button. At the top of the code window are two tabs. The current tab has the text

frmViewer.vb*. This is the tab containing the code window for the form with the file-

name ffrmViewer.vb. Next to this is a tab that contains the text ffrmViewer.vb

[Design]*. Click this tab now to switch from Code view to the form designer. If you

receive an error when you click the tab, the code you entered contains an error, and

you need to edit it to make it the same as shown in Figure 1.13. After the form

designer appears, double-click the Quit button to access its Click event.

Enter the following code in the Quit button’s Click event handler; press Enter at the

end of each statement:

‘ Close the window and exit the application

Me.Close()

The Me.Close() statement closes the current form. When the last loaded form in
a program is closed, the application shuts itself down—completely. As you build
more robust applications, you’ll probably want to execute all kinds of clean-up rou-
tines before terminating an application, but for this example, closing the form is
all you need to do.

FIGURE 1.13
Make sure that
your code exact-
ly matches the
code shown
here.

By the
Way

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 27

28 HOUR 1: A Visual Basic 2005 Programming Tour

Running a Project
Your application is now complete. Click the Save All button on the toolbar (it looks

like a stack of disks), and then run your program by pressing F5. You can also run

the program by clicking the button on the toolbar that looks like a right-facing tri-

angle and resembles the Play button on a VCR (this button is called Start, and it can

also be found on the Debug menu). Learning the keyboard shortcuts will make your

development process move along faster, so I recommend you use them whenever

possible.

When you run the program, the Visual Basic interface changes, and the form you’ve

designed appears floating over the design environment (see Figure 1.14).

FIGURE 1.14
When in Run
mode, your pro-
gram executes
the same as it
would for an
end user.

You are now running your program as though it were a standalone application run-

ning on another user’s machine; what you see is exactly what users would see if

they ran the program (without the Visual Studio 2005 design environment in the

background, of course). Click the Select Picture button to display the Select Picture

dialog box (see Figure 1.15). Use the dialog box to locate a picture file. When you’ve

found a file, double-click it, or click once to select it and then click Open. The select-

ed picture is then displayed in the picture box, as shown in Figure 1.16.

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 28

Summary 29

When you click the Select Picture button, the default path shown depends on
the last active path in Windows, so it will be different for you than shown in
Figure 1.15.

By the
Way

FIGURE 1.15
The
OpenFileDialog
control handles
all the details of
browsing for
files. Cool, huh?

FIGURE 1.16
Visual Basic
makes it easy
to display pic-
tures with very
little work.

If you want to select and display a picture from your digital camera, chances are
the format is JPEG, so you’ll need to select this from the Files of Type drop-down.
Also, if your image is very large, you’ll see only the upper-left corner of the image
(what fits in the picture box). In later hours, I’ll show you how you can scale the
image to fit the picture box, and even resize the form to show a larger picture in
its entirety.

Summary
When you’re finished playing with the program, click the Quit button to return to

Design view.

By the
Way

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 29

30 HOUR 1: A Visual Basic 2005 Programming Tour

That’s it! You’ve just created a bona fide Visual Basic program. You’ve used the tool-

box to build an interface with which users can interact with your program, and

you’ve written code in strategic event handlers to empower your program to do

things. These are the basics of application development in Visual Basic. Even the

most complicated programs are built using this fundamental approach; you build

the interface and add code to make the application do things. Of course, writing

code to do things exactly the way you want things done is where the process can get

complicated, but you’re on your way.

If you take a close look at the organization of the hours in this book, you’ll see that

I start out by teaching you the Visual Basic (Visual Studio .NET) environment. I then

move on to building an interface, and later I teach you all about writing code. This

organization is deliberate. You might be a little anxious to jump in and start writing

serious code, but writing code is only part of the equation—don’t forget the word

Visual in Visual Basic. As you progress through the hours, you’ll be building a solid

foundation of development skills.

Soon, you’ll pay no attention to the man behind the curtain—you’ll be that man (or

woman)!

Q&A
Q. Can I show bitmaps of file types other than BMP and JPG?

A. Yes. The PictureBox supports the display of images with the extensions BMP,
JPG, ICO, EMF, WMF, and GIF. The PictureBox can even save images to a file
using any of the supported file types.

Q. Is it possible to show pictures in other controls?

A. The PictureBox is the control to use when you are just displaying images.
However, many other controls allow you to display pictures as part of the
control. For instance, you can display an image on a button control by set-
ting the button’s Image property to a valid picture.

Workshop

Quiz
1. What type of Visual Basic project creates a standard Windows program?

2. What window is used to change the attributes (location, size, and so on) of a

form or control in the IDE?

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 30

Workshop 31

3. How do you access the default event (code) of a control?

4. What property of a picture box do you set to display an image?

5. What is the default event for a button control?

Answers
1. Windows Application

2. The Properties window

3. Double-click the control in the designer.

4. The Image property

5. The Click event

Exercises
1. Change your Picture Viewer program so that the user can also locate and

select GIF files. (Hint: Change the Filter property of the OpenFileDialog con-

trol.)

2. Create a new project with a new form. Create two buttons on the form, one

above the other. Next, change their position so that they appear next to each

other.

03_0672327392_ch01.qxd 2/17/06 1:33 PM Page 31

